SegWay: A simple framework for unsupervised sleep segmentation in experimental EEG recordings

نویسندگان

  • Farid Yaghouby
  • Sridhar Sunderam
چکیده

Sleep analysis in animal models typically involves recording an electroencephalogram (EEG) and electromyogram (EMG) and scoring vigilance state in brief epochs of data as Wake, REM (rapid eye movement sleep) or NREM (non-REM) either manually or using a computer algorithm. Computerized methods usually estimate features from each epoch like the spectral power associated with distinctive cortical rhythms and dissect the feature space into regions associated with different states by applying thresholds, or by using supervised/unsupervised statistical classifiers; but there are some factors to consider when using them:•Most classifiers require scored sample data, elaborate heuristics or computational steps not easily reproduced by the average sleep researcher, who is the targeted end user.•Even when prediction is reasonably accurate, small errors can lead to large discrepancies in estimates of important sleep metrics such as the number of bouts or their duration.•As we show here, besides partitioning the feature space by vigilance state, modeling transitions between the states can give more accurate scores and metrics. An unsupervised sleep segmentation framework, "SegWay", is demonstrated by applying the algorithm step-by-step to unlabeled EEG recordings in mice. The accuracy of sleep scoring and estimation of sleep metrics is validated against manual scores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

The septum modulates REM sleep-related penile erections in rats

Rapid eye movement sleep in males is characterized by penile erection along with EEG desynchronization, muscle atonia, ponto-geniculo-occipital waves, and rapid eye movements (REM). The central neural mechanisms regulating sleep related erections (SREs) are not known. Recently, the lateral preoptic area has been shown to contribute in sleep-related erectile mechanisms. The present study was con...

متن کامل

The septum modulates REM sleep-related penile erections in rats

Rapid eye movement sleep in males is characterized by penile erection along with EEG desynchronization, muscle atonia, ponto-geniculo-occipital waves, and rapid eye movements (REM). The central neural mechanisms regulating sleep related erections (SREs) are not known. Recently, the lateral preoptic area has been shown to contribute in sleep-related erectile mechanisms. The present study was con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016